RESEARCH ARTICLE

OPEN ACCESS

Small Signal Modeling Of Controller For Statcom Used In Distribution System For Reactive Power Management

Wahiddun Nisa, P.Sunita

¹M. Tech, Dept. of EEE Centurion University of Technology & Management Paralakhemundi, India ²Associate Professor, Dept. of EEE Centurion University of Technology & Management Paralakhemundi, India

ABSTRACT

In this paper non-linear model of the STATCOM is linearized and the following strategies have been adopted . Hence, a small signal model is adopted here. Here, the grid voltage lags the fundamental component of the STATCOM converter terminal voltage with a phase angle difference ' α '. Small signal modeling of the phase angle ' α ' and modulation index 'm' is also done. A single PI-controller for the reactive component current of the STATCOM has been designed. In this model, the DC-link capacitor voltage is held constant without using a separate controller. The STATCOM are designed using SVPWM technique. Through adjustment of the modulation index, fast modulation of the STATCOM reactive power output can be achieved due to high sensitivity of the same with respect to the output voltage of the STATCOM VSC. The model, with PI controllers has been simulated in MATLAB/SIMULINK environment with variation of the grid current is achieved for linear loads.

Keywords: -PHASE ANGLE, PI, MODULATION INDEX, SVPWM

I. INTRODUCTION

Reactive power surplus/deficit causes a precarious condition leading to voltage collapse. Hence, the electrical utilities and heavy industries are facing a number of challenges related to reactive power management [1-5]. Reactive power (VAR) compensation is defined as the management of reactive power to improve the performance of ac power systems. The concept of reactive power compensation embraces wide and diverse fields of both systems and customer problems, especially related to the phenomena like voltage unbalance, distortion or flicker [6] on the electrical grid, voltage sags [7-8], poor power factor or even voltage instability [9-11].

The loads are generally categorized as linear and non-linear loads. The linear loads are R, R-L, R-L-C, motors, heaters and incandescent lamps while non-linear loads are power electronic apparatus like diodes or thyristor rectifiers, switched mode power supply (SMPS), adjustable speed drives, ferromagnetic devices, arcing equipments, induction heating systems etc. As is well known, the current is proportional to the voltage in case of a linear load as shown in Fig.1. (a) Whereas the current is not proportional to the voltage in case of non-linear load (as shown in Fig.1. (b)).

40

(b) Fig.1.Linear and non-linear load connected to grid supply

Series and shunt VAR compensation techniques are used to improve electrical performance of ac power systems. Series compensation modifies the transmission or distribution system (reflected) parameters, while shunt compensation changes the equivalent impedance of the load.

Earlier, rotating synchronous condensers and fixed or mechanically switched capacitors (or inductors) were used for shunt compensation [12, 13]. However, in recent years [14], static VAR compensators employing thyristor switched capacitors and thyristor controlled reactors have been developed. Also, the use of self-commutated PWM converters with an appropriate control scheme permits the implementation of static compensators with a response time faster than the fundamental power cycle

II. OPERATING PRINCIPAL

The STATCOM (shown in Fig.2) consists of a controlled solid-state device based voltage source converter connected in parallel to the power system through an ac-side reactor and a capacitor on the DClink side (which has to be maintained at a given voltage under closed-loop control). It is the static analogue of a synchronous motor operating at no load with over excitation (synchronous condenser). This equipment, however, has no mechanical inertia. It is well understood that the STATCOM operates in capacitive mode when its output voltage is greater than the grid side voltage (when it has to compensate for inductive loads), whereas in the reverse case, it works to compensate for capacitive loads.

Fig.2 Schematic diagram of the STATCOM

As mentioned already, the STATCOM is, in principle, a static (power electronic) replacement of the age-old synchronous condenser as shown in Fig.2. It shows the schematic diagram of a STATCOM connected to the utility grid at the point of common coupling (PCC) through the coupling inductors (or ac side reactors). The phasor diagram of the fundamental component of the STATCOM converter terminal voltage and the grid voltage at PCC for an inductive load in operation. (neglecting the harmonic content in the STATCOM converter terminal voltage) is presented in Fig.3 (a). However, the inter-connecting reactors have fundamental power frequency voltage at one end and PWM voltage waveform of a converter at other end. The fundamental component of the converter terminal voltage, V_{a1} , may be forced to be in-phase with the sinusoidal grid voltage, V_{\perp} , under closed-loop control. Increasing the amplitude of the STATCOM converter terminal voltage, V_{a1} , above the amplitude of the grid voltage, V_s causes leading (capacitive) current, I_{c1} , to be drawn from the grid as shown in Fig.3(b) and similarly decreasing V_{a1} below V_s causes lagging (inductive) current to be drawn from the grid. However, if V_{a1} is strictly kept in phase with V_s , no active power flows from the grid side to the STATCOM to provide for its losses. Therefore, V_{a1} must be made to lag V_{s} appropriately so that the STATCOM draws adequate but not excess active power from the grid to make up for the losses.

Fig.3.Schematic phasor diagram for operation of STATCOM

III. SVPWM

Principle of Pulse Width Modulation (PWM)

A circuit model of a single-phase inverter with a centre-taped grounded DC bus is illustrated in Fig.4.Fig.5 illustrates the principle of pulse width modulation. It is depicted from Fig.5, the inverter output voltage is determined in the following:

When
$$V_{control} > V_{tri}$$
, $V_{ao} = \frac{V_{dc}}{2}$ (1)

When
$$V_{control} < V_{tri}$$
, $V_{ao} = -\frac{V_{dc}}{2}$ (2)

The inverter output voltage has the following features:

- PWM frequency is the same as the frequency of V_{yi} .
- Amplitude is controlled by the peak value of $V_{control}$.
- Fundamental frequency is controlled by the frequency of $V_{control}$

Modulation index (m) is defined as

$$m = \frac{v_{control}}{v_{tri}} = \frac{(V_{ao})_1}{V_{dc}/2}$$
(3)

Where, $(V_{ao})_1$ is the fundamental frequency component of peak of V_{ao}

Fig.4 Circuit model of a single-phase inverter

Fig.5 Pulse width modulation

The circuit model of a 3-phase voltage source PWM converter based STATCOM is given in Fig.4. It is of six power switches (IGBT based) as shown in that figure. When an upper IGBT is switched on, i.e. the output of the switches 1, 3, 5 is 1 and corresponding lower IGBT is switched off, the states of 4, 6, and 2 will be 0. Hence, there are eight possible combinations of on and off patterns of the

switches and it produces eight inverter vectors (\boldsymbol{V}_1 to

 V_0) as shown in Fig.7. Six are non-zero vectors

 $(V_1 \text{ to } V_6)$ and two are zero vectors $(V_0 \text{ and } V_7)$. It

has been shown to generate less harmonic distortion in the output voltages and or currents applied to the phases of the load. It provides more efficient use of the DC-link voltage compared with sinusoidal pulse width modulation (SPWM) [15, 16-19] as illustrated in Fig.6.

Fig.6 Locus of comparison of SVPWM over SPWM

Fig.7 It shows the basic switching vectors and sectors

Switching time duration at any Sector The switching times are derived using formula

$$T_{1} = \frac{\sqrt{3} \cdot T_{z} \cdot |V_{ref}|}{V_{dc}} \left(\sin\left(\frac{\pi}{3} - \delta + \frac{n-1}{3}\pi\right) \right) (4)$$

And
$$T_{2} = \frac{\sqrt{3} \cdot T_{z} \cdot |\overline{V_{ref}}|}{V_{c}} \left(\sin\left(\delta - \frac{n-1}{3}\pi\right) \right)$$

(5)

 $T_0 = T_z - T_1 - T_2$, where, n=1 through 6 (that is Sector 1 to 6) and $0 \le \delta \le 60^{0}$ (6)

IV. IV.MODELING OF THE STATCOM

Fig.8 Simplified main circuit diagram of the STATCOM

The ac side inductor, L_s , its inherent resistor, R_s , DC-link capacitor, C_{dc} , fundamental rms grid current, I_s , and load current, I_1 , are shown in Fig.2.1. Three-phase grid voltage, $v_{s,abc}$, lags the STATCOM converter terminal voltages, $v_{o,abc}$, by phase angle difference, α , This can be expressed as:

$$v_{s,abc} = \begin{bmatrix} v_{sa}(t) \\ v_{sb}(t) \\ v_{sc}(t) \end{bmatrix} = \sqrt{\frac{2}{3}} V_s \begin{bmatrix} \sin(\omega t - \alpha) \\ \sin(\omega t - \frac{2\pi}{3} - \alpha) \\ \sin(\omega t + \frac{2\pi}{3} - \alpha) \end{bmatrix}$$
(7)

The STATCOM current dynamics is governed by the following equation

$$L_{s} \frac{d}{dt} \begin{bmatrix} i_{ca}(t) \\ i_{cb}(t) \\ i_{cc}(t) \end{bmatrix} = -R_{s} \begin{bmatrix} i_{ca}(t) \\ i_{cb}(t) \\ i_{cc}(t) \end{bmatrix} + \begin{bmatrix} v_{sa}(t) \\ v_{sb}(t) \\ v_{sb}(t) \end{bmatrix} - \begin{bmatrix} v_{oa}(t) \\ v_{ob}(t) \\ v_{oc}(t) \end{bmatrix}$$
(8)

The zero-sequence component of current is always zero as

$$i_{ca}(t) + i_{cb}(t) + i_{cc}(t) = 0$$
 (9)

The balanced three-phase *abc* co-ordinate axes are directly transformed to orthogonal co-ordinate axes rotating at an angular speed ω *rad* /sec are as follows:

$$\begin{bmatrix} x_{d}(t) \\ x_{q}(t) \\ x_{q}(t) \end{bmatrix} = K \begin{bmatrix} x_{a}(t) \\ x_{b}(t) \\ x_{b}(t) \end{bmatrix} (10)$$

Where,

$$K = \sqrt{\frac{2}{3}} \begin{bmatrix} \sin(\omega t) & \sin\left(\omega t - \frac{2\pi}{3}\right) & \sin\left(\omega t + \frac{2\pi}{3}\right) \\ \cos(\omega t) & \cos\left(\omega t - \frac{2\pi}{3}\right) & \cos\left(\omega t + \frac{2\pi}{3}\right) \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
(11)

$$\begin{bmatrix} K \end{bmatrix}^{-1} = \sqrt{\frac{2}{3}} \begin{vmatrix} \sin(\omega t) & \cos(\omega t) & \frac{1}{\sqrt{2}} \\ \sin\left(\omega t - \frac{2\pi}{3}\right) & \cos\left(\omega t - \frac{2\pi}{3}\right) & \frac{1}{\sqrt{2}} \\ \sin\left(\omega t + \frac{2\pi}{3}\right) & \cos\left(\omega t + \frac{2\pi}{3}\right) & \frac{1}{\sqrt{2}} \end{vmatrix} = \begin{bmatrix} K \end{bmatrix}^{T}$$
(12)

The relation between the grid voltage and STATCOM current in the resistor $R_{\rm c}$ gives

$$v_{s,abc}(t) = R_{s}i_{c,abc}(t) + v_{abc}(t)$$
 (13)

The d - q transformation of above equation yields

$$v_{s,dqo}(t) = R_{s}i_{c,dqo}(t) + v_{dqo}(t)$$
 (14)

The relationship between the grid voltage and STATCOM current in the series inductor L_s gives

$$L_{s} \frac{d}{dt} (i_{c,abc} (t)) = v_{abc} (t) - v_{o,abc} (t) (15)$$

The d - q transformation of above equation yields,

$$L_{s} \frac{d}{dt} (i_{c,dqo}(t)) = L_{s} \frac{d}{dt} (K.) K^{-1} i_{c,dqo}(t) + v_{dqo}(t) - v_{o,dqo}(t)$$
(16)

The dynamic equation of the STATCOM current is

٦

$$L_{s} \frac{d}{dt} \begin{bmatrix} i_{cd}(t) \\ i_{cq}(t) \end{bmatrix} = \begin{bmatrix} -R_{s} & \omega L_{s} \\ -\omega L_{s} & -R_{s} \end{bmatrix} \begin{bmatrix} i_{cd}(t) \\ i_{cq}(t) \end{bmatrix} + \begin{bmatrix} v_{sd}(t) \\ v_{sq}(t) \end{bmatrix} - \begin{bmatrix} v_{od}(t) \\ v_{oq}(t) \end{bmatrix}$$
(17)

Under the assumption that harmonic components generated by the switching action in the converter are negligible, a switching function *S* can be defined as follow:

$$S = \begin{bmatrix} S_{a}(t) \\ S_{b}(t) \\ S_{c}(t) \end{bmatrix} = \sqrt{\frac{2}{3}} m_{c} \begin{bmatrix} \sin(\omega t) \\ \sin(\omega t - \frac{2\pi}{3}) \\ \sin(\omega t + \frac{2\pi}{3}) \end{bmatrix} (18)$$

г

The modulation index, being constant for a programmed PWM, is given by

$$MI = m = \frac{v_{o, peak}}{v_{dc}} = \sqrt{\frac{2}{3}}m_{c} (19)$$

Where, m_c is called as modulation conversion $\sqrt{2}$

index(MCI) and $\sqrt{\frac{2}{3}}$ is the multiplying factor for the

transformation of three-phase stationary abc axes to rotating d - q quantities

The STATCOM converter terminal phase voltages are given by

$$v_{o,abc}(t) = Sv_{dc}(t)$$
 (20)

The STATCOM converter terminal phase voltages in d - q frame with (10) and (20) are given as

$$v_{o,dq} = KSv_{dc} = m_{c} \begin{bmatrix} 1 \\ 0 \end{bmatrix} v_{dc} (t) (21)$$

On solving equation (17) by using transformation method and equation(21), the d - q-axis currents of the STATCOM are

$$\frac{d}{dt}\begin{bmatrix}i_{cd}(t)\\i_{cq}(t)\end{bmatrix} = \begin{bmatrix}-\frac{R_s}{L_s} & \omega\\ -\omega & -\frac{R_s}{L_s}\end{bmatrix}\begin{bmatrix}i_{cd}(t)\\ i_{cq}(t)\end{bmatrix} + \frac{1}{L_s}\begin{bmatrix}V_s\cos\alpha - m_cv_{dc}(t)\\ -V_s\sin\alpha\end{bmatrix}$$

(22)

The DC side capacitor current of the STATCOM and its d - q axis current is given as

$$i_{dc}(t) = S^{T} i_{c,abc}(t)$$
(23)

$$i_{dc}(t) = S^{T} K^{-1} \begin{bmatrix} i_{cd}(t) \\ i_{cq}(t) \end{bmatrix} = m_{c} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} i_{cd}(t) \\ i_{cq}(t) \end{bmatrix} (24)$$

The relationship between the voltage and current in the DC side of the STATCOM is given by:

$$i_{dc}(t) = C_{dc} \frac{dv_{dc}(t)}{dt} (25)$$

Replacing (25) in (24), the DC link voltage dynamic equation of the STATCOM is

$$\frac{dv_{dc}(t)}{dt} = \frac{m_c}{C_{dc}}i_{cd}(t)$$
 (26)

Replacing (26) in (25), the complete mathematical model of the STATCOM in d - q-axis will be as follows:

$$\frac{d}{dt}\begin{bmatrix}i_{cd}(t)\\ i_{cq}(t)\end{bmatrix} = \begin{bmatrix}-\frac{R_s}{L_s} & \omega & -\frac{m_c}{L_s}\end{bmatrix} \begin{bmatrix}i_{cd}(t)\\ i_{cq}(t)\end{bmatrix} = \begin{bmatrix}-\omega & -\frac{R_s}{L_s} & 0\\ \vdots\\ \frac{m_c}{C_{dc}} & 0 & 0\end{bmatrix} \begin{bmatrix}v_{dc}(t)\end{bmatrix} + \frac{V_s}{L_s}\begin{bmatrix}-\sin\alpha\\ 0\end{bmatrix} (\frac{m_c}{C_{dc}}) = \frac{m_c}{C_{dc}} = 0$$

The active and reactive powers injected or drawn by the STATCOM are expressed in equation (28) and (29) respectively.

$$p_{c}(t) = v_{sd}(t)i_{cd}(t) + v_{sq}(t)i_{cq}(t)$$

$$= -V_{s}i_{cd}(t)\cos\alpha + V_{s}i_{cq}(t)\sin\alpha$$
(28)

$$q_{c}(t) = v_{sq}(t)i_{cd}(t) - v_{sd}(t)i_{cq}(t) = -V_{s}i_{cd}(t)\cos\alpha - V_{s}i_{cq}(t)\sin\alpha$$
(29)

The states of $I_{cd}(s)$, $I_{cq}(s)$ and $V_{dc}(s)$ of the STATCOM can be extricated in frequency domain from (30), expressed as:

$$I_{cd}(s) = \frac{V_{s} \left[s^{2} \frac{\cos \alpha}{L_{s}} + s \left(\frac{R_{s}}{L_{s}^{2}} \cos \alpha - \frac{\omega}{L_{s}} \sin \alpha \right) \right]}{s^{3} + 2s^{2} \frac{R_{s}}{L_{s}} + s \left(\omega^{2} + \frac{R_{s}^{2}}{L_{s}^{2}} + \frac{m_{c}^{2}}{L_{s}C_{dc}} \right) + m_{c}^{2} \frac{R_{s}}{L_{s}^{2}C_{dc}}}{s^{2} C_{dc}}$$

$$\left] I_{cq}(s) = \frac{-V_{s} \left[s^{2} \frac{\sin \alpha}{L_{s}} + s \left(\frac{R_{s}}{L_{s}^{2}} \sin \alpha + \frac{\omega}{L_{s}} \cos \alpha \right) + \frac{m_{c}}{L_{s}^{2}C_{dc}} \right]}{s^{3} + 2s^{2} \frac{R_{s}}{L_{s}} + s \left(\omega^{2} + \frac{R_{s}^{2}}{L_{s}^{2}} + \frac{m_{c}^{2}}{L_{s}C_{dc}} \right) + m_{c}^{2} \frac{R_{s}}{L_{s}^{2}C_{dc}}}{s^{2} C_{dc}} \right]$$

$$\left[\cos \alpha - R_{s} - \omega - c \right]$$

$$\left[\cos \alpha - R_{s} - \omega - c \right]$$

$$V_{dc}(s) = m_{c}V_{s} \frac{\left[s\frac{\cos \alpha}{L_{s}C_{dc}} + \frac{R_{s}}{L_{s}^{2}C_{dc}}\cos \alpha - \frac{\omega}{L_{s}C_{dc}}\sin \alpha\right]}{s^{3} + 2s^{2}\frac{R_{s}}{L_{s}} + s\left(\omega^{2} + \frac{R_{s}^{2}}{L_{s}^{2}} + \frac{m_{c}^{2}}{L_{s}C_{dc}}\right) + m_{c}^{2}\frac{R_{s}}{L_{s}^{2}C_{dc}}}$$
(32)

V. ANALYSIS

A small signal model has been proposed in [20] to model the STATCOM for varying α and/or m (m_c). In their model [20], the authors did not make use of the dependence of α on m (m_c), both

of which play important roles in the STATCOM dynamics. An improved model, referred to in this paper as the "first small signal model" (Model II) is proposed in this present work, making use of the relationship between α and m (m_{\perp}).

For a given operating point, Model II of the STATCOM is derived on the basis of the following assumptions [20, 21]:

The second and other higher order terms (products of variations) are negligible.

• The change $\hat{\alpha}$ is small.

With the above assumptions, the *d* -axis component v_{ad} [equation (21)] may be written as:

$$V_{od} + \hat{v}_{od}(t) = \left(M_{c} + \hat{m}_{c}(t)\right)\left(V_{dc} + \hat{v}_{dc}(t)\right)(33)$$

At steady state $V_{od} = M_{c}V_{dc}$ giving us,

 $\hat{v}_{ad}(t) = M_{c}\hat{v}_{dc}(t) + \hat{m}_{c}(t)V_{dc}(34)$

At the same time the DC-link current of the STATCOM given by equation (24) may be rewritten as:

$$I_{dc} + \hat{i}_{dc}(t) = (M_{c} + \hat{m}_{c}(t))(I_{cd} + \hat{i}_{cd}(t))(35)$$

At steady state $I_{cd} = 0$, which gives,

 $\hat{i}_{dc}(t) = M_c \hat{i}_{cd}(t)$, neglecting higher order variations

Or,
$$C_{dc} \frac{d}{dt} \hat{v}_{dc}(t) = M_{c} \hat{i}_{cd}(t)$$
 (36)

where the variables with 'hats' are small variations over the steady state values. For small values of $\hat{\alpha}$ (small perturbations) the values of sine and cosine functions may be approximated by:

 $\sin \hat{\alpha} \approx \hat{\alpha}, \cos \hat{\alpha} \approx 1$ (37)

Applying the same assumptions to equations (16) , the small signal equations are

$$L_{s} \frac{d}{dt} \left(\hat{i}_{cd}(t) \right) = \omega_{1} L_{s} \hat{i}_{cq}(t) - R_{s} \hat{i}_{cd}(t) - M_{c} \hat{v}_{dc}(t) - \hat{m}_{c}(t) V_{dt}$$
(38)

$$L_{s}\frac{d}{dt}\left(\hat{i}_{cq}\left(t\right)\right) = -R_{s}\hat{i}_{cq}\left(t\right) - \omega_{1}L_{s}\hat{i}_{cd}\left(t\right) - V_{s}\hat{\alpha}\left(t\right)$$
(39)

Taking Laplace Transform, the states of \hat{I}_{cd} , \hat{I}_{cq} , \hat{V}_{dc} can be determined as

$$\begin{bmatrix} i \\ cd \\ lcq \\ cd \\ vd_{c} (s) \end{bmatrix} = \frac{1}{A(s)} \begin{bmatrix} s^{2}L_{s}C_{dc} + sR_{s}C_{dc} & s\omega_{1}L_{s}C_{dc} & -sM_{c}L_{s} - M_{c}R_{s} \\ -s\omega_{1}L_{s}C_{dc} & s^{2}L_{s}C_{dc} + sR_{s}C_{dc} + M_{c}^{2} & M_{c}\omega_{1}L_{s} \\ -s\omega_{1}L_{s}C_{dc} & s^{2}L_{s}C_{dc} + sR_{s}C_{dc} + M_{c}^{2} & M_{c}\omega_{1}L_{s} \\ sM_{c}L_{s} + M_{c}R_{s} & M_{c}\omega_{1}L_{s} & (sL_{s} + R_{s})^{2} + (\omega_{1}L_{s})^{2} \end{bmatrix} \begin{bmatrix} -V_{dc}\tilde{m}_{c}(s) \\ -V_{dc}\tilde{m}_{c}$$

Where,

$$A(s) = L_{s}^{2}C_{dc}s^{3} + 2L_{s}C_{dc}R_{s}s^{2} + [C_{dc}R_{s}^{2} + (\omega_{1}L_{s})^{2} + M_{c}^{2}L_{s}]s + M_{c}^{2}R_{s}$$

Transfer functions connecting the signals can be derived as:

$$\frac{I_{cd}(s)}{\hat{m}_{c}(s)} = \frac{-V_{dc}C_{dc}(sL_{s} + R_{s})s}{A(s)}$$

$$\frac{\hat{I}_{cd}(s)}{\hat{\alpha}(s)} = \frac{-V_{dc}\omega_{1}L_{s}C_{dc}s}{A(s)} (41)$$

$$\frac{\hat{I}_{cq}(s)}{\hat{m}_{c}(s)} = \frac{sV_{dc}\omega_{1}L_{s}C_{dc}}{A(s)} (42)$$

$$\frac{\hat{I}_{cq}(s)}{\hat{\alpha}(s)} = \frac{-V_{s}(L_{s}C_{dc}s^{2} + R_{s}C_{dc} + M_{c}^{2})}{A(s)} (42)$$

$$\frac{\hat{V}_{dc}(s)}{\hat{m}_{c}(s)} = \frac{-M_{c}V_{dc}(sL_{s} + R_{s})}{A(s)},$$

$$\frac{\hat{V}_{dc}(s)}{\hat{\alpha}(s)} = \frac{-M_{c}V_{s}\omega_{1}L_{s}}{A(s)} (43)$$

The responses of the states \hat{i}_{ca} , \hat{i}_{cd} and \hat{v}_{dc} (as in (2.29 -2.31)) are simulated in MATLAB (using the parameters given in Table-A.1) with a step variation of $\hat{\alpha} = -5^{0}$ and a change of $(\hat{m}_c = 0.1)$. It however causes $\hat{m} = 0.08164$ V_{dc} to reduce by 35 V in the steady state as shown in Fig.9(b). However, due to a change in $\hat{\alpha}$, the STATCOM draws additional steady state reactive current of 37 A (Fig.10(a)) at steady state. Neither does, v_{dc} , the DC-link voltage remain at its previous steady state value. It increases in magnitude (by 50 V) for a change in $\hat{\alpha}$ (Fig.10(b)). Hence the open loop dynamics suggest that closed-loop control is required for reactive component of the STATCOM current as well as v_{dc} in order to reduce transient

Fig.9 Transient response in Model II for a small change in $\hat{m}_c = 0.1$ ($\hat{m} = 0.8164$) in capacitive mode: (a) \hat{i}_{cq} w.r.t. time and (b) \hat{v}_{dc} w.r.t. time

Fig.10 Transient response in Model II for a small change in $\hat{\alpha}$ (-5[°]) in capacitive mode: (a) \hat{i}_{ca} w.r.t. time and (b) \hat{v}_{dc} w.r.t. time.

VI. **CONTROLLER DESIGN**

To achieve a fast dynamic response of the STATCOM, it is required that the V_{dc} , be kept constant by controlling $\hat{\alpha}$ and \hat{m} (\hat{m}_{a}). Simultaneously the load reactive power may be compensated by controlling $\hat{\alpha}$ only.

If the V_{dc} is to be kept constant, then the variation \hat{V}_{dc} should be zero. Hence, from equation (26)

Putting
$$\hat{V}_{dc} = 0$$
,

$$\Rightarrow \hat{m}_{c}(s) = -\frac{V_{s}\omega_{1}L_{s}}{V_{dc}(sL_{s} + R_{s})}\hat{\alpha}(s) = G_{m2a}\hat{\alpha}(s)$$
(44)
Where, $G_{m2a} = \frac{-V_{s}\omega_{1}L_{s}}{V_{dc}(sL_{s} + R_{s})}$ (45)

By using above relation I have proposed a block diagram of the closed-loop control system with a PI-controller in order to control the reactive component of the STATCOM current. It is noteworthy that this would indirectly control the DClink voltage.

Fig.11 Closed-loop block diagram with PI-controller for Model II

and closed-loop, G_{m^2}) between the reference reactive current to the generated reactive current of the STATCOM are

$$G_{m2o} = G_{pi} (G_{m2b} + G_{m2c}) (46)$$

$$G_{m2} = \frac{G_{pi} (G_{m2b} + G_{m2c})}{1 + G_{pi} (G_{m2b} + G_{m2c})} (47)$$

 τ is chosen to be 3.3*m* sec. The parameters of PIcontroller (47) are determined by the root locus method (taking $\xi = 0.25$) and their values are determined after inserting the values of the system parameters from Table-A.1.

$$K_{pm 2} = -0.02 \ rad \ / A, K_{im 2} = -6.66 \ sec$$

The simulation of the step response of the above closed-loop control scheme is shown in Fig.12. It may be noted that the unit step response of \hat{i}_{ca} settles at 12 m sec with only 5% overshoot (Fig.12(a)). These controller parameters are also applied to the same closed-loop system for checking the tracking transients of the STATCOM. From Fig.12 (b), it may be further noted that the STATCOM can track the reference reactive current of $\mp 20 A$ in both capacitive and inductive mode. The output settles at 1m sec with overshoot of only 2A in both modes.

Fig.12 Response of \hat{i}_{cq} of the STATCOM with PIcontroller for Model II: (a) Step response and (b) with actual \hat{i}_{ca}

Sl.No	Meaning	Symbol	Values
1	Fundamental frequency	$f = f_1$	50 Hz
2	Fundamental angular frequency	$\omega = \omega_1$	314 rad/sec
3	RMS line-to- line voltage	V _s	415V

4	Effective coupling resistance of inductor	<i>R</i> _s	1.0 Ω
5	Coupling inductance or ac side reactor	L _s	5.44mH
6	DC-link capacitor	C_{dc}	$680 \mu F$
7	Modulation index (Modulation conversion index)	<i>m</i> (<i>m</i> _c)	0.866 to 1.00 (0.979 to 1.22)
8	Load resistance	R ₁	23 Ω
9	Load inductance(with its inherent resistance)	$L_{l}(r_{l})$	60 <i>mH</i> (2.06 Ω)

Table-A.1: Parameters and variables of the STATCOM system

VII. SIMULATION BLOCK

In this paper, STATCOM is implemented which will control q-axis current using MATLAB/SIMULINK. Here 23 Ω and 60mH is taken as load Switching frequency=10 KHz

Fig.13.Total simulink block

Fig.14.main controller simulink block

VIII. SIMULATION RESULTS

The waveforms of the grid side phase-a voltage (v_{sa}) and current (i_{sa}) at point of common connection (PCC) (without the STATCOM in operation) are shown in Fig.15. v_{sa} is plotted to a reduced scale of 10 : 1.

steady state it is seen that the power angle is 39.64° (so that power factor is 0.77). The STATCOM will now act in closed-loop with this system along with the proposed controllers in order to improve this power factor.

Fig.15 Grid phase-a voltage and current with R - L load before operation of the STATCOM Operation with controller :

Fig.17 System voltage and STATCOM current at DC link capacitor voltage of 100V

Fig.18 System voltage and system current after compensation at DC link voltage of 550V

Fig.19 System voltage and STATCOM current at DC link voltage of 550V

Fig.20 Active and reactive power generated by STATCOM

Fig.21 DC link voltage

Fig.22 DC link current

Fig.23 Variation of incremental of phase angle

Fig.24 Variation of phase angle

Fig.30 System voltage and system current at 600V DC link capacitor voltage

www.ijera.com

IX. CONCLUSION

In this paper, a small signal model of the STATCOM is proposed considering the grid voltage to be lagging to the fundamental component of the STATCOM converter output voltage. There is no separately designed controller for the DC-link voltage for the strategy of STATCOM. The strategy has been simulated using MATLAB/SIMULINK environment for different pre-charge voltage on the DC-link, with linear load. The STATCOM is applied for improving the power factor of the grid current in this case.

REFERENCE

- [1] C.L.Wadhwa, "Electrical Power Systems", Wiley Eastern Ltd, New Delhi, 1995.
- [2] E.W.Kimberk, "Power System Stability Vol.I, II, III", Wiley Eastern Ltd, New Delhi, 1994.
- [3] P.M.Anderson and A.A.Fouad, "Power System Control and Stability", Iowa State, University Press, Ames, Iowa, 1997.
- [4] P.Kundur, "Power System Stability and Control", EPRI, Power Engineering Series, 1994.
- [5] C.W.Taylore, "Power System Voltage Stability", McGraw-Hill.1994.
- [6] S.Mark Halpin and R.F.Burch, "An Improved Simulation Approach for the Analysis of Voltage Flicker and the Evaluation of Mitigation Strategies", IEEE Transactions on Power Delivery, Vol.12, No.3, pp.1285-1291, July 1997.
- [7] M.F.McGranaghan, D.R.Mueller and M.J.Samotyj, "Voltage Sags in Industrial Systems", IEEE Transactions on Industry Applications, Vol.29, No.2, pp.397-403, March/April 1993.
- [8] C.J.Melborn, T.D.Davis and G.E.Beam, "Voltage sags: Their Impart on the Utility and Industrial Customers", IEEE Transactions on Industry Applications, Vol.34, No.3, pp.549-557, May/June 1998.
- [9] M.K.Pal, "Voltage Stability Conditions Considering Load Characteristic", IEEE Transactions on Power Systems, Vol.7, No.1, pp.243-249, Feb.1992.
- [10] M.K.Pal, "Voltage Stability: Analysis needs, modeling requirement, and modeling adequacy", IEE Proceedings-C, Vol.140, No.4, pp.279-286, July1993.
- [11] T.V.Cutsem and C.D.Vournas, "Voltage Stability analysis in transient and mid-term time scales", IEEE Transactions on Power Systems, Vol.11, No.1, pp.146-154, Feb.1994.
- [12] T.J.E.Miller, "Reactive Power Control in Electric Systems" John Wiley, 1982.

- [13] K.R.Padiyar, "Power System Dynamics-Stability and Control", Interline Publishing Ltd, Bangalore, 1996.
- [14] Y.H. Song and A.T.John "Flexible AC Transmission Systems (FACTS)", IEE Power and Energy series Inc. 1999.
- [15] B.K.Bose, "Modern Power Electronics and Drives", Prentice-Hall, Inc.2002.
- [16] R.Wu, S.B.Dewan and G.R.Slemon, "Analysis of an ac-to-dc Voltage Source Converter Using PWM with Phase and Amplitude Control", IEEE Transactions on Industry Applications, Vol.27, No.2, pp.355-363, March/April 1991.
- [17] K.Zhou and D.Wang, "Relation between Space Vector Modulation and Three Phase Carrier- Based PWM: A Comprehensive Analysis", IEEE Transactions on Industrial Electronics, Vol.49, No.1, pp.186-196, Feb. 2002.
- [18] A.Kwasinski, P.T.Krein and P.L.Chapman, "Time Domain Comparison of Pulse-Width Modulation Schemes", IEEE Power Electronics Letters, Vol.1, No.3, pp.64-68, Sept. 2003.
- [19] S.K.Mondal, B.K.Bose, V.Oleschuk and J.O.P.Pinto, "Space Vector Pulse Width Modulation of Three-Level Inverter Extending Operation into Over modulation Region", IEEE Transactions on Power Electronics, Vol.18, No.2, pp.604-611, March 2003.
- [20] G.C. Cho, N.S. Choi, C.T. Rim and G.H. Cho, "Modeling, Analysis and Control of Static Var Compensator using Three-Level Inverter", IEEE, Industry Society Meet,pp.837-843,1992.
- [21] J.K.Moharana, M.Sengupta, A.Sengupta "Closed-Loop Control of a lab-scale STATCOM prototype for Reactive Power Compensation", communicated to NPEC-2011, BESU, Shibpur, Howrah, West Bengal, 2011.